Rabu, 28 April 2010

modul dasar listrik dan elektronika 1

I. TEORI KELISTRIKAN

Tujuan Pembelajaran
1. Siswa dapat mengetahui dan memahami teori dasar kelistrikan
2. Siswa mampu membedakan antara tegangan, arus dan hambatan (resistansi)


Teori dasar
I.1. Teori elektron dan teori atom
A. Teori Elektron
Teori Elektron dikemukakan oleh Democretos, yang mengatakan :
“Jika suatu benda/Zat (padat, cair, gas) dibagi-bagi menjadi bagian yang terkecil dan bagian tersebut masih memiliki sifat asalnya disebut molekul. Kemudian jika molekul tersebut terus dibagi-bagi menjadi bagian yang sangat kecil sekali, dan bagian tersebut tidak memiliki sifat asalnya, disebut atom.”

Atom berasal dari kata Yunani yang berarti tidak dapat dibagi-bagi lagi.
A = tidak sedangkan tomos = dibagi-bagi.
Jadi Atom adalah bagian yang terkecil dari suatu molekul yang tidak dapat dibagi-bagi lagi menurut reaksi kimia biasa.
Sedangkan molekul adalah bagian yang terkecil dari suatu benda yang masih memiliki sifat asalnya.

B. Teori Atom
Atom terdiri dari sebuah inti atom (nukleus) yang disusun oleh proton (partikel penyusun atom yang bermuatan positif ) dan netron (partikel penyusun atom yang tidak bermuatan (netral)), dan dikelilingi oleh elektron-elektron (partikel penyusun atom yang bermuatan negatif).
Sebuah atom dikatakan netral apabila jumlah proton dalam inti sama dengan jumlah elektron yang mengelilingi inti atom tersebut.

Atom netral jika diambil/dikurangi satu atau lebih elektronnya, maka atom tersebut tidak berkesetimbang (netral) lagi, karena kekurangan elektron. Atom yang kekurangan elektron akan bermuatan positip, disebut Ion Positip.

Atim netral jika ditambahkan satu atau lebih elektronnya, maka atom tersebut tidak berkesetimbang (netral) lagi, karena kelebihan elektron. Atom yang kelebihan elektron akan bermuatan negatip, disebut Ion Negatip
Elektron bebas = Elektron Valensi adalah elektron-elektron yang berada pada lintasan kulit atom terluar.






Gambar 1.1 : Model atom dalam bentuk 3 dimensi






Gambar 1.2 : Model atom Bohr
C. Listrik
Kelistrikan adalah sifat benda yang muncul dari adanya muatan listrik. Listrik, dapat juga diartikan sebagai berikut:
• Listrik adalah kondisi dari partikel subatomik tertentu, seperti elektron dan proton, yang menyebabkan penarikan dan penolakan gaya di antaranya.
• Listrik adalah sumber energi yang disalurkan melalui kabel. Arus listrik timbul karena muatan listrik mengalir dari saluran positif ke saluran negatif.
Ada 2 jenis muatan listrik: positif dan negatif. Melalui eksperimen, muatan-sejenis saling menolak dan muatan-lawan jenis saling menarik satu sama lain. Besarnya gaya menarik dan menolak ini ditetapkan oleh hukum Coulomb. Beberapa efek dari listrik didiskusikan dalam fenomena listrik dan elektromagnetik.
Satuan unit SI dari muatan listrik adalah coulomb, yang memiliki singkatan "C". Simbol Q digunakan dalam persamaan untuk mewakili kuantitas listrik atau muatan. Contohnya, "Q=0,5 C" berarti "kuantitas muatan listrik adalah 0,5 coulomb".
Jika listrik mengalir melalui bahan khusus, misalnya dari wolfram dan tungsten, cahaya pijar akan dipancarkan oleh logam itu. Bahan-bahan seperti itu dipakai dalam bola lampu (bulblamp atau bohlam).
Setiap kali listrik mengalir melalui bahan yang mempunyai hambatan, maka akan dilepaskan panas. Semakin besar arus listrik, maka panas yang timbul akan berlipat. Sifat ini dipakai pada elemen setrika dan kompor listrik.
Listrik mengalir dari saluran positif ke saluran negatif. Dengan listrik arus searah jika kita memegang hanya kabel positif (tapi tidak memegang kabel negatif), listrik tidak akan mengalir ke tubuh kita (kita tidak terkena strum). Demikian pula jika kita hanya memegang saluran negatif.
Dengan listrik arus bolak-balik, Listrik bisa juga mengalir ke bumi (atau lantai rumah). Hal ini disebabkan oleh sistem perlistrikan yang menggunakan bumi sebagai acuan tegangan netral (ground). Acuan ini, yang biasanya di pasang di dua tempat (satu di ground di tiang listrik dan satu lagi di ground di rumah). Karena itu jika kita memegang sumber listrik dan kaki kita menginjak bumi atau tangan kita menyentuh dinding, perbedaan tegangan antara kabel listrik di tangan dengan tegangan di kaki (ground), membuat listrik mengalir dari tangan ke kaki sehingga kita akan mengalami kejutan listrik ("terkena strum").
Listrik dapat disimpan, misalnya pada sebuah aki atau batere. Listrik yang kecil, misalnya yang tersimpan dalam batere, tidak akan memberi efek setrum pada tubuh. Pada aki mobil yang besar, biasanya ada sedikit efek setrum, meskipun tidak terlalu besar dan berbahaya. Listrik mengalir dari kutub positif batere/aki ke kutub negatif.
I.2. Tegangan, arus dan hambatan (resistansi)
A. Tegangan
Tegangan listrik (kadang disebut sebagai Voltase) adalah perbedaan potensi listrik antara dua titik dalam rangkaian listrik, dinyatakan dalam satuan volt. Besaran ini mengukur energi potensial sebuah medan listrik untuk menyebabkan aliran listrik dalam sebuah konduktor listrik. Tergantung pada perbedaan potensi listrik satu tegangan listrik dapat dikatakan sebagai ekstra rendah, rendah, tinggi atau ekstra tinggi.
V= I .R
Satuan Tegangan Listrik atau potensial listrik dinyatakan dalam Volt ( V ).
1 Volt = 1000 mili Volt ( m V )
1 mV = 1000 mikro Volt ( u V )
1 Kilo Volt = 1 KV = 1000 Volt
1 Mega Volt = 1 MV = 1000 KV
Voltmeter adalah alat ukur yang digunakan untuk mengukur besarnya tegangan listrik.

B. Arus
Arus listrik adalah banyaknya muatan listrik yang mengalir tiap satuan waktu. Muatan listrik bisa mengalir melalui kabel atau penghantar listrik lainnya.
I = Q/T
Pada zaman dulu, Arus konvensional didefinisikan sebagai aliran muatan positif, sekalipun kita sekarang tahu bahwa arus listrik itu dihasilkan dari aliran elektron yang bermuatan negatif ke arah yang sebaliknya.
Satuan SI untuk arus listrik adalah ampere (A).
Sumber Arus Listrik

Sumber arus listrik adalah penghasil arus listrik. Sumber arus listrik ada 2 macam :

1. Sumber arus listrik searah ( DC = Direct Current )
Yaitu sumber arus listrik yang tidak berubah fasenya.
Contoh Sumber arus listrik searah ( DC ) :
1. Batere/Baterai ( elemen kering )
2. Accumulator ( aki = accu ) (elemen basah )
3. Elemen Volta ( elemen basah )
4. Solar sel
5. Dinamo DC atau Generator DC
6. Adaptor AC ke DC : a. Adaptor Sistem Perata Tunggal, b. Adaptor Sistem Cabang Tengah, c. Adaptor Sistem jembatan, d. Adaptor Sistem Dwi Kutub
2. Sumber arus listrik bolak balik ( AC = Alternating Current )
Yaitu sumber arus listrik yang berubah-ubah fasenya setiap saat, jangka waktu tertentu mengalir ke satu arah,dan waktu yang lainnya kearah yang lain.
Contoh sumber arus listrik bolak balik ( AC )
1. Generator AC
2. Jala-jala PLN yang dihasilkan oleh : PLTA, PLTU, PLTP, PLTN, dll.
3. Inverter DC ke AC
Amperemeter adalah alat ukur yang digunakan untuk mengukur besarnya arus listrik .

C. Hambatan (Resistansi)
Hambatan listrik adalah perbandingan antara tegangan listrik dari suatu komponen elektronik (misalnya resistor) dengan arus listrik yang melewatinya. Hambatan listrik dapat dirumuskan sebagai berikut:
R = V/I
di mana V adalah tegangan dan I adalah arus.
Satuan SI untuk Hambatan adalah Ohm (R).
Ohmmeter adalah alat ukur yang digunakan untuk mengukur besarnya hambatan listrik / resistansi.

Hukum Muatan Listrik
1. Jika ada dua benda bermuatan sejenis saling berdekatan (positif dengan positif atau negatif dengan negatif), maka akan terjadi tolak menolak.
2. Jika ada dua benda bermuatan tak sejenis saling didekatkan akan terjadi tolak menolak.
Kedua Hukum diatas dapat disimpulkan bahwa :
1. Muatan sejenis akan tolakmenarik
2. Muatan tak sejenis akan tarik menarik















II. KOMPONEN ELEKTRONIKA

Tujuan Pembelajaran
1. Siswa dapat mengetahui perbedaan konduktor, isolator dan semikonduktor
2. Siswa dapat mengetahui macam-macam komponen elektronika.
3. Siswa dapat menghitung nilai dari resistor.
4. Siswa dapat membedakan komponen pasif dan komponen aktif

Teori dasar
2.1. Konduktor, isolator dan Semikonduktor
kemampuan suatu bahan untuk memindahkan muatan listrik, dapat dibagi dalam 3 kelompok yaitu konduktor, isolator dan semikonduktor.
A. Konduktor (Penghantar)
Yaitu benda atau bahan yang dapat memindahkan muatan listrik
Sifat konduktor antara lain:
a). mempunyai banyak elektron bebas.
Elektron bebas yaitu elektron-elektron yang berada pada lintasan terluar dari
Struktur atom.
b). elektron-elektron pada atom mudah berpindah dari lintasan yang dalam ke lintasan terluar.
c). Biasanya mudah mengantar panas/kalor seperti : besi, emas, perak, tembaga
aluminium, kuningan dan lain-lain.
Benda cair: larutan elektrolit ( H2SO4 ), air ( H2O )
Tubuh manusia, tanah dan sebagainya.
B. Isolator (Penyekat)
Adalah benda atau bahan yang tidak dapat memindahkan muatan listrik.
Sifat dari isolator antara lain :
a). Ikatan elektron pada intinya sangat kuat. (tidak ada elektron bebas).
b). Sulit menghantar panas/kalor.



C. Semikonduktor
Adalah benda atau zat yang kurang baik untuk konduktor dan tidak sempurna sebagai isolator.
Contoh:
b. Silikon
c. Germanium

Kedua bahan tersebut biasa dipakai untuk membuat komponen seperti :
1. Dioda
2. Transistor
3. IC (Integrated Circuit = Rangkaian yang dimampatkan/terpadu).
4. Micro chip.

2.2. Komponen elektronika
Komponen Elektronika biasanya sebuah alat berupa benda yang menjadi bagian pendukung suatu rangkaian elektronik yang dapat bekerja sesuai dengan kegunaannya. Mulai dari yang menempel langsung pada papan rangkaian baik berupa PCB, CCB, Protoboard maupun Veroboard dengan cara disolder atau tidak menempel langsung pada papan rangkaian (dengan alat penghubung lain, misalnya kabel).
Komponen elektronika ini terdiri dari satu atau lebih bahan elektronika, yang terdiri dari satu atau beberapa unsur materi dan jika disatukan, dipanaskan, ditempelkan dan sebagainya akan menghasilkan suatu efek yang dapat menghasilkan suhu atau panas, menangkap atau menggetarkan materi, merubah arus, tegangan, daya listrik dan lainnya.








Gambar 2.1 : Beberapa komponen elektronika
Komponen elektronika dibagi menjadi dua, yaitu komponen aktif dan komponen pasif.
A. Komponen aktif adalah komponen elektronika yang bila dialiri aliran listrik atau signal akan menghasilkan tenaga. Contohnya adalah Dioda Semikonduktor, Transistor, Intergrated Circuit (IC).
B. Komponen pasif adalah komponen-komponen elektronika yang tidak dapat menghasilkan tenaga apabila di aliri aliran listrik. Contohnya adalah hambatan (Resistor), Kapasitor (kondensator),dan sebagainya.

2.3. Jenis Komponen Elektronika
A. Resistor
Pada dasarnya semua bahan memiliki sifat resistif namun beberapa bahan seperti tembaga, perak, emas dan bahan metal umumnya memiliki resistansi yang sangat kecil. Bahan-bahan tersebut menghantar arus listrik dengan baik, sehingga dinamakan konduktor. Kebalikan dari bahan yang konduktif, yaitu bahan material seperti karet, gelas, karbon memiliki resistansi yang lebih besar menahan aliran elektron sehingga disebut sebagai isolator.
Resistor adalah komponen dasar elektronika yang selalu digunakan dalam setiap rangkaian elektronika karena bisa berfungsi sebagai pengatur atau untuk membatasi jumlah arus yang mengalir dalam suatu rangkaian. Dengan resistor, arus listrik dapat didistribusikan sesuai dengan kebutuhan. Sesuai dengan namanya resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Satuan resistansi dari suatu resistor disebut Ohm atau dilambangkan dengan simbol Ω (Omega).
Di dalam rangkaian elektronika, resistor dilambangkan dengan huruf “R“. Dilihat dari bahannya, ada beberapa jenis resistor yang ada dipasaran antara lain : Resistor Carbon, Wirewound, dan Metalfilm. Ada juga Resistor yang dapat diubah-ubah nilai resistansinya antara lain : Potensiometer, Rheostat dan Trimmer (Trimpot). Selain itu ada juga Resistor yang nilai resistansinya berubah bila terkena cahaya namanya LDR (Light Dependent Resistor) dan resistor yang nilai resistansinya akan bertambah besar bila terkena suhu panas yang namanya PTC (Positive Thermal Coefficient) serta resistor yang nilai resistansinya akan bertambah kecil bila terkena suhu panas yang namanya NTC (Negative Thermal Coefficient).
Untuk resistor jenis carbon maupun metalfilm biasanya digunakan kode-kode warna sebagai petunjuk besarnya nilai resistansi (tahanan) dari resistor. Resistor ini mempunyai bentuk seperti tabung dengan dua kaki di kiri dan kanan. Pada badannya terdapat lingkaran membentuk cincin kode warna, kode ini untuk mengetahui besar resistansi tanpa harus mengukur besarnya dengan ohmmeter. Kode warna tersebut adalah standar manufaktur yang dikeluarkan oleh EIA (Electronic Industries Association).






Gambar 2.2 : Resistor karbon
Tabel 2.1. kode warna resistor












a). Cara membaca nilai resistor
Besaran resistansi suatu resistor dibaca dari posisi cincin yang paling depan ke arah cincin toleransi. Biasanya posisi cincin toleransi ini berada pada badan resistor yang paling pojok atau juga dengan lebar yang lebih menonjol, sedangkan posisi cincin yang pertama agak sedikit ke dalam. Dengan demikian pemakai sudah langsung mengetahui berapa toleransi dari resistor tersebut. Kalau kita telah bisa menentukan mana cincin yang pertama selanjutnya adalah membaca nilai resistansinya.
Jumlah cincin yang melingkar pada resistor umumnya sesuai dengan besar toleransinya. Biasanya resistor dengan toleransi 5%, 10% atau 20% memiliki 3 cincin (tidak termasuk cincin toleransi). Tetapi resistor dengan toleransi 1% atau 2% (toleransi kecil) memiliki 4 cincin (tidak termasuk cincin toleransi). Cincin pertama dan seterusnya berturut-turut menunjukkan besar nilai satuan, dan cincin terakhir adalah faktor pengalinya.







Gambar 2.3 : Urutan cincin pada resistor
Misalnya resistor dengan cincin kuning, violet, merah dan emas. Cincin berwarna emas adalah cincin toleransi. Dengan demikian urutan warna cincin resistor ini adalah, cincin pertama berwarna kuning, cincin kedua berwarna violet dan cincin ke tiga berwarna merah. Cincin ke empat yang berwarna emas adalah cincin toleransi. Dari tabel 1.1 diketahui jika cincin toleransi berwarna emas, berarti resistor ini memiliki toleransi 5%. Nilai resistansinya dihitung sesuai dengan urutan warnanya. Pertama yang dilakukan adalah menentukan nilai satuan dari resistor ini. Karena resistor ini resistor 5% (yang biasanya memiliki tiga cincin selain cincin toleransi), maka nilai satuannya ditentukan oleh cincin pertama dan cincin kedua. Masih dari tabel 1.1, diketahui cincin kuning nilainya = 4 dan cincin violet nilainya = 7. Jadi cincin pertama dan ke dua atau kuning dan violet berurutan, nilai satuannya adalah 47. Cincin ketiga adalah faktor pengali, dan jika warna cincinnya merah berarti faktor pengalinya adalah 100. Sehingga dengan ini diketahui nilai resistansi resistor tersebut adalah nilai satuan x faktor pengali atau 47 x 100 = 4700 Ohm = 4,7K Ohm (pada rangkaian elektronika biasanya di tulis 4K7 Ohm) dan toleransinya adalah + 5%. Arti dari toleransi itu sendiri adalah batasan nilai resistansi minimum dan maksimum yang di miliki oleh resistor tersebut. Jadi nilai sebenarnya dari resistor 4,7k Ohm + 5% adalah :
4700 x 5% = 235
Jadi,
Rmaksimum = 4700 + 235 = 4935 Ohm
Rminimum = 4700 – 235 = 4465 Ohm
Apabila resistor di atas di ukur dengan menggunakan ohmmeter dan nilainya berada pada rentang nilai maksimum dan minimum (4465 s/d 4935) maka resistor tadi masih memenuhi standar. Nilai toleransi ini diberikan oleh pabrik pembuat resistor untuk mengantisipasi karakteristik bahan yang tidak sama antara satu resistor dengan resistor yang lainnya sehingga para desainer elektronika dapat memperkirakan faktor toleransi tersebut dalam rancangannya. Semakin kecil nilai toleransinya, semakin baik kualitas resistornya. Sehingga dipasaran resistor yang mempunyai nilai toleransi 1% (contohnya resistor metalfilm) jauh lebih mahal dibandingkan resistor yang mempunyai toleransi 5% (resistor carbon).
b). Macam resistor
Ada lima macam resistor yang kita kenal yaitu :
1. Resistor Karbon
2. Resistor Kompon
3. Resistor Kawat Gulung ( Wire Wound )
4. Resistor Serbuk Besi
5. Resistor Film Logam ( Metal Film )
Dilihat dari fungsinya, resistor dapat dibagi menjadi :
Resistor Tetap (Fixed Resistor)
Yaitu resistor yang nilainya tidak dapat berubah, jadi selalu tetap (konstan). Resistor ini biasanya dibuat dari nikelin atau karbon. Berfungsi sebagai pembagi tegangan, mengatur atau membatasi arus pada suatu rangkaian serta memperbesar dan memperkecil tegangan.
Resistor Tidak Tetap (variable resistor)
Yaitu resistor yang nilainya dapat berubah-ubah dengan jalan menggeser atau memutar toggle pada alat tersebut, sehingga nilai resistor dapat kita tetapkan sesuai dengan kebutuhan. Berfungsi sebagai pengatur volume (mengatur besar kecilnya arus), tone control pada sound system, pengatur tinggi rendahnya nada (bass/treble) serta berfungsi sebagai pembagi tegangan arus dan tegangan.
Resistor NTC dan PTC.
NTC (Negative Temperature Coefficient), yaitu resistor yang nilainya akan bertambah kecil bila terkena suhu panas. Sedangkan PTC (Positive Temperature Coefficient), yaitu resistor yang nilainya akan bertambah besar bila temperaturnya menjadi dingin.
Resistor LDR
LDR (Light Dependent Resistor) yaitu jenis resistor yang berubah hambatannya karena pengaruh cahaya. Bila terkena cahaya gelap nilai tahanannya semakin besar, sedangkan bila terkena cahaya terang nilainya menjadi semakin kecil.
B. Kapasitor (Kondensator)
Kapasitor (Kondensator) yang dalam rangkaian elektronika dilambangkan dengan huruf “C” adalah suatu alat yang dapat menyimpan energi/muatan listrik di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kapasitor ditemukan oleh Michael Faraday (1791-1867). Satuan kapasitor disebut Farad (F). Satu Farad = 9 x 1011 cm2 yang artinya luas permukaan kepingan tersebut.
Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik. Bahan-bahan dielektrik yang umum dikenal misalnya udara vakum, keramik, gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki (elektroda) metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutub negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutub positif, karena terpisah oleh bahan dielektrik yang non-konduktif. Muatan elektrik ini tersimpan selama tidak ada konduksi pada ujung-ujung kakinya. Di alam bebas, phenomena kapasitor ini terjadi pada saat terkumpulnya muatan-muatan positif dan negatif di awan.





Gambar 2.4 : Skema kapasitor
a). Kapasitansi
Kapasitansi didefinisikan sebagai kemampuan dari suatu kapasitor untuk dapat menampung muatan elektron. Coulombs pada abad 18 menghitung bahwa 1 coulomb = 6.25 x 1018 elektron. Kemudian Michael Faraday membuat postulat bahwa sebuah kapasitor akan memiliki kapasitansi sebesar 1 farad jika dengan tegangan 1 volt dapat memuat muatan elektron sebanyak 1 coulombs. Dengan rumus dapat ditulis :
Q = C V
Q = muatan elektron dalam C (coulombs)
C = nilai kapasitansi dalam F (farad)
V = besar tegangan dalam V (volt)
Dalam praktek pembuatan kapasitor, kapasitansi dihitung dengan mengetahui luas area plat metal (A), jarak (t) antara kedua plat metal (tebal dielektrik) dan konstanta (k) bahan dielektrik. Dengan rumus dapat di tulis sebagai berikut :
C = (8.85 x 10-12) (k A/t)
Berikut adalah tabel contoh konstanta (k) dari beberapa bahan dielektrik yang disederhanakan.

Tabel. 2.2. Konstanta dielektrik bahan kapasitor





Untuk rangkaian elektronik praktis, satuan farad adalah sangat besar sekali. Umumnya kapasitor yang ada di pasaran memiliki satuan : µF, nF dan pF.
1 Farad = 1.000.000 µF (mikro Farad)
1 µF = 1.000.000 pF (piko Farad)
1 µF = 1.000 nF (nano Farad)
1 nF = 1.000 pF (piko Farad)
1 pF = 1.000 µµF (mikro-mikro Farad)
1 µF = 10-6 F
1 nF = 10-9 F
1 pF = 10-12 F
Konversi satuan penting diketahui untuk memudahkan membaca besaran sebuah kapasitor. Misalnya 0.047µF dapat juga dibaca sebagai 47nF, atau contoh lain 0.1nF sama dengan 100pF.
Kapasitor diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.



Gambar 2.5 : Lambang kapasitor yang mempunyai kutub
Sedangkan jenis yang satunya lagi kebanyakan nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif atau negatif pada kakinya, kebanyakan

berbentuk bulat pipih berwarna coklat, merah, hijau dan lainnya seperti tablet atau kancing baju yang sering disebut kapasitor (capacitor).





Gambar 2.6 : Lambang kapasitor yang tidak mempunyai kutub
Adapun cara memperbesar kapasitansi kapasitor atau kondensator dengan jalan:
1. Menyusunnya berlapis-lapis.
2. Memperluas permukaan variabel.
3. Memakai bahan dengan daya tembus besar.
Untuk kapasitor polyester nilai kapasitansinya bisa diketahui berdasarkan warna seperti pada resistor.

Tabel 2.3. Kode warna kapasitor













Contoh cara membaca kapasitor






Seperti komponen lainnya, besar kapasitansi nominal ada toleransinya. Pada tabel 2.3 diperlihatkan nilai toleransi dengan kode-kode angka atau huruf tertentu. Dengan tabel tersebut pemakai dapat dengan mudah mengetahui toleransi kapasitor yang biasanya tertera menyertai nilai nominal kapasitor. Misalnya jika tertulis 104 X7R, maka kapasitansinya adalah 100nF dengan toleransi +/-15%. Sekaligus diketahui juga bahwa suhu kerja yang direkomendasikan adalah antara -55Co sampai +125Co .










Dari penjelasan di atas bisa diketahui bahwa karakteristik kapasitor selain kapasitansi juga tak kalah pentingnya yaitu tegangan kerja dan temperatur kerja. Tegangan kerja adalah tegangan maksimum yang diijinkan sehingga kapasitor masih dapat bekerja dengan baik. Misalnya kapasitor 10uF25V, maka tegangan yang bisa diberikan tidak boleh melebihi 25 volt dc. Umumnya kapasitor-kapasitor polar bekerja pada tegangan DC dan kapasitor non-polar bekerja pada tegangan AC. Sedangkan temperatur kerja yaitu batasan temperatur dimana kapasitor masih bisa bekerja dengan optimal. Misalnya jika pada kapasitor tertulis X7R, maka kapasitor tersebut mempunyai suhu kerja yang direkomendasikan antara -55Co sampai +125Co. Biasanya spesifikasi karakteristik ini disajikan oleh pabrik pembuat di dalam datasheet.

b). Rangkaian kapasitor
Rangkaian kapasitor secara seri akan mengakibatkan nilai kapasitansi total semakin kecil. Di bawah ini contoh kapasitor yang dirangkai secara seri.



Gambar 2.7 : Rangkaian seri kapasitor

Pada rangkaian kapasitor yang dirangkai secara seri berlaku rumus :




Rangkaian kapasitor secara paralel akan mengakibatkan nilai kapasitansi pengganti semakin besar. Di bawah ini contoh kapasitor yang dirangkai secara paralel.




Gambar 2.8 : Rangkaian Paralel kapasitor

Pada rangkaian kapasitor paralel berlaku rumus :
Ctotal = C1 + C2 + C3

c). Fungsi kapasitor
Fungsi penggunaan kapasitor dalam suatu rangkaian :
1. Sebagai kopling antara rangkaian yang satu dengan rangkaian yang lain (pada PS = Power Supply)
2. Sebagai filter dalam rangkaian PS
3. Sebagai pembangkit frekuensi dalam rangkaian antenna
4. Untuk menghemat daya listrik pada lampu neon
5. Menghilangkan bouncing (loncatan api) bila dipasang pada saklar

d). Macam-macam kapasitor
Berdasarkan kegunaannya kapasitor dibagi menjadi 3 yaitu :
1. Kondensator tetap (nilai kapasitasnya tetap tidak dapat diubah)
2. Kondensator elektrolit (Electrolit Condenser = Elco)
3. Kondensator variabel (nilai kapasitasnya dapat diubah-ubah)

Berdasarkan bahan dielektrik
1. Kapasitor Electrostatic : Kapasitor electrostatic adalah kelompok kapasitor yang dibuat dengan bahan dielektrik dari keramik, film dan mika. Keramik dan mika adalah bahan yang popular serta murah untuk membuat kapasitor yang kapasitansinya kecil. Tersedia dari besaran pF sampai beberapa uF, yang biasanya untuk aplikasi rangkaian yang berkenaan dengan frekuensi tinggi. Termasuk kelompok bahan dielektrik film adalah bahan-bahan material seperti polyester (polyethylene terephthalate atau dikenal dengan sebutan mylar), polystyrene, polyprophylene, polycarbonate, metalized paper dan lainnya.
Mylar, MKM, MKT adalah beberapa contoh sebutan merek dagang untuk kapasitor dengan bahan-bahan dielektrik film. Umumnya kapasitor kelompok ini adalah non-polar.
2. Kapasitor Electrolytic : Kelompok kapasitor electrolytic terdiri dari kapasitor-kapasitor yang bahan dielektriknya adalah lapisan metal-oksida. Umumnya kapasitor yang termasuk kelompok ini adalah kapasitor polar dengan tanda + dan - di badannya. Mengapa kapasitor ini dapat memiliki polaritas, adalah karena proses pembuatannya menggunakan elektrolisa sehingga terbentuk kutup positif anoda dan kutup negatif katoda.
Karena alasan ekonomis dan praktis, umumnya bahan metal yang banyak digunakan adalah aluminium dan tantalum. Bahan yang paling banyak dan murah adalah Aluminium. Untuk mendapatkan permukaan yang luas, bahan plat Aluminium ini biasanya digulung radial. Sehingga dengan cara itu dapat diperoleh kapasitor yang kapasitansinya besar. Sebagai contoh 100uF, 470uF, 4700uF dan lain-lain, yang sering juga disebut kapasitor elco.
3. Kapasitor Electrochemical : Satu jenis kapasitor lain adalah kapasitor electrochemical. Termasuk kapasitor jenis ini adalah batere dan accu. Pada kenyataanya batere dan accu adalah kapasitor yang sangat baik, karena memiliki kapasitansi yang besar dan arus bocor (leakage current) yang sangat kecil. Tipe kapasitor jenis ini juga masih dalam pengembangan untuk mendapatkan kapasitansi yang besar namun kecil dan ringan, misalnya untuk applikasi mobil elektrik dan telepon selular.

C. Dioda
Dioda adalah komponen semiconductor yang paling sederhana, ia terdiri atas dua elektroda yaitu katoda dan anoda.Ujung badan dioda biasanya diberi bertanda, berupa gelang atau berupa titik, yang menandakan letak katoda.
Dioda hanya bisa dialiri arus DC searah saja, pada arah sebaliknya arus DC tidak akan mengalir. Apabila dioda silicon dialiri arus AC ialah arus listrik dari PLN, maka yang mangalir hanya satu arah saja sehingga arus output dioda berupa arus DC.
Bila anoda diberi potensial positif dan katoda negatif, dikatakan dioda diberi forward bias dan bila sebaliknya, dikatakan dioda diberi reverse bias. Pada forward bias, perbedaan voltage antara katoda dan anoda disebut threshold voltage atau knee voltage. Besar voltage ini tergantung dari jenis diodanya, bisa 0.2V, 0.6V dan sebagainya.
Bila dioda diberi reverse bias (yang beda voltagenya tergantung dari tegangan catu) tegangan tersebut disebut tegangan terbalik. Tegangan terbalik ini tidak boleh melampaui harga tertentu, harga ini disebut breakdown voltage, misalnya dioda type 1N4001 sebasar 50V. Dioda jenis germanium misalnya type 1N4148 atau 1N60 bila diberikan forward bias dapat meneruskan getaran frekuensi radio dan bila forward bias dihilangkan, akan mem­blok getaran frekuensi radio tersebut. Adanya sifat ini, dioda jenis tersebut digunakan untuk switch.





Gambar 2.9 : (a) Dioda dan (b) simbol dioda
a). Macam-macam dioda
1. Dioda Zener adalah suatu dioda yang mempunyai sifat bahwa tegangan terbaliknya sangat stabil, tegangan ini dinamakan tegangan zener. Di atas tegangan zener, dioda ini akan menghantar listrik ke dua arah. Dioda ini digunakan sebagai voltage stabilizer atau voltage regulator. Bentuk dioda ini seperti dioda biasa, perbedaan hanya dapat dilihat dari type yang tertulis pada bodynya dan zener voltage dilihat pada vademicum.



Gambar 2.10 : Simbol dioda zener
2. Light Emiting Diode (LED), yaitu suatu dioda yang dapat mengeluarkan cahaya bila diberikan forward bias. Dioda jenis ini banyak digunakan sebagai indikator dan display. Misalnya dapat digunakan untuk seven segmen (display angka).






Gambar 2.11 : Gambar dan simbol LED
3. Dioda foto mempunyai sifat lain lagi, yang berkebalikan dengan LED ialah akan menghasilkan arus listrik bila terkena cahaya. Besarnya arus listrik tergantung dari besarnya cahaya yang masuk.
4. Dioda Kapasiansi Variabel yang disebut juga dioda varicap atau dioda varactor. Sifat dioda ini ialah bila dipasangkan menurut arah terbalik akan berperan sebagai kondensator. Kapasitansinya tergantung pada tegangan yang masuk. Dioda jenis ini banyak digunakan pada modulator FM dan juga pada VCO suatu PLL (Phase Lock Loop).
5. Dioda bridge adalah dioda silicon yang dirangkai menjadi suatu bridge dan dikemas menjadi satu kesatuan komponen. Di pasaran terjual berbagai bentuk diodabridge dengan berbagai macam kapasitasnya. Ukuran dioda
bridge yang utama adalah voltage dan ampere maksimumnya.

Gambar 2.12 : Dioda bridge
Banyak sekali penggunaan dioda dan secara umum dioda dapat digunakan antara lain untuk : pengaman, penyearah, voltage regulator, modulator, pengendali frekuensi, indikator, switch.





D. Transistor
Transistor adalah komponen senikonduktor, komponen ini boleh dikatakan termasuk komponen yang susunannya sederhana bila dibandingkan dengan Integrated Circuit.
Pada prinsipnya, suatu transistor terdiri atas dua buah dioda yang disatukan. Agar transistor dapat bekerja, kepada kaki¬-kakinya harus diberikan tegangan, tegangan ini dinamakan bias voltage. Basis¬ emitor diberikan forward voltage, sedangkan basis¬ kolektor diberikan reverse voltage. Sifat transistor adalah bahwa antara kolektor dan emitor akan ada arus (transistor akan menghantar) bila ada arus basis. Makin besar arus basis makin besar penghatarannya.
Berbagai bentuk transistor yang terjual di pasaran, bahan selubung kemasannya juga ada berbagai macam misalnya selubung logam, keramik dan ada yang berselubung polyester. Transistor pada umumnya mempunyai tiga kaki, kaki pertama disebut basis, kaki berikutnya dinamakan kolektor dan kaki yang ketiga disebut emitor.

Gambar 2.13 : Berbagai bentuk transistor


Gambar 2.14 : simbol transistor
Suatu arus listrik yang kecil pada basis akan menimbulkan arus yang jauh lebih besar diantara kolektor dan emitornya, maka dari itu transistor digunakan untuk memperkuat arus (amplifier).
Terdapat dua jenis transistor ialah jenis NPN dan jenis PNP. Pada transistor jenis NPN tegangan basis dan kolektornya positif terhadap emitor, sedangkan pada transistor PNP tegangan basis dan kolektornya negatif terhadap tegangan emitor.
Transistor dapat dipergunakan antara lain untuk:
1.Sebagai penguat arus, tegangan dan daya (AC dan DC)
2.Sebagai penyearah
3.Sebagai mixer
4.Sebagai osilator
5.Sebagai switch

Jenis transistor
1. Uni Junktion Transistor (UJT) : Uni Junktion Transistor (UJT) adalah transistor yang mempunyai satu kaki emitor dan dua basis. Kegunaan transistor ini adalah terutama untuk switch elektronis. Ada Dua jenis UJT ialah UJT Kanal ¬N dan UJT Kanal¬ P.




Gambar 2.15 : Simbol UJT
2. Field Effect Transistor (FET) : Field Effect Transistor (FET) adalah suatu jenis transistor khusus. Tidak seperti transistor biasa, yang akan menghantar bila diberi arus di basis, transistor jenis FET akan menghantar bila diberikan tegangan (jadi bukan arus). Kaki¬-kakinya diberi nama Gate (G), Drain (D) dan Source (S).
Beberapa Kelebihan FET dibandingkan dengan transistor biasa ialah antara lain penguatannya yang besar, serta desah yang rendah. Karena harga FET yang lebih tinggi dari transistor, maka hanya digunakan pada bagian-bagian yang memang memerlukan. Ujud fisik FET ada berbagai macam yang mirip dengan transistor.
Seperti halnya transistor, ada dua jenis FET yaitu Kanal¬ N dan Kanal¬ P. Kecuali itu terdapat beberapa macam FET ialah Junktion FET (JFET) dan Metal Oxide Semiconductor FET (MOSFET).
3. MOSFET : Metal Oxide Semiconductor FET (MOSFET) adalah suatu jenis FET yang mempunyai satu Drain, satu Source dan satu atau dua Gate. MOSFET mempunyai input impedance yang sangat tinggi. Mengingat harga yang cukup tinggi, maka MOSFET hanya digunakan pada bagian¬ bagian yang benar¬benar memerlukannya. Penggunaannya misalnya sebagai RF amplifier pada receiver untuk memperoleh amplifikasi yang tinggi dengan desah yang rendah. Dalam pengemasan dan perakitan dengan menggunakan MOSFET perlu diperhatiakan bahwa komponen ini tidak tahan terhadap elektrostatik, mengemasnya menggunakan kertas timah, pematriannya menggunakan jenis solder yang khusus untuk pematrian MOSFET.
Seperti halnya pada FET, terdapat dua macam MOSFET ialah Kanal ¬P dan Kanal ¬N.

E. Integrated Circuit (IC)
Integrated Circuit (IC) sebenarnya adalah suatu rangkaian elektronik yang dikemas menjadi satu kemasan yang kecil. Beberapa rangkaian yang besar dapat diintegrasikan menjadi satu dan dikemas dalam kemasan yang kecil. Suatu IC yang kecil dapat memuat ratusan bahkan ribuan komponen.
Bentuk IC bisa bermacam¬-macam, ada yang berkaki 3 misalnya LM7805, ada yang seperti transistor dengan kaki banyak misalnya LM741.
Bentuk IC ada juga yang menyerupai sisir (single in line), bentuk lain adalah segi empat dengan kaki-¬kaki berada pada ke¬ empat sisinya, akan tetapi kebanyakan IC berbentuk dual in line (DIL).
IC yang berbentuk bulat dan dual in line, kaki-¬kakinya diberi bernomor urut dengan urutan sesuai arah jarum jam, kaki nomor SATU diberikan bertanda titik atau takikan.
Setiap IC ditandai dengan nomor type, nomor ini biasanya menunjukkan jenis IC, jadi bila nomornya sama maka IC tersebut sama fungsinya. Kode lain menunjukkan pabrik pembuatnya, misalnya operational amplifier type 741 dapat muncul dengan tanda uA¬741, LM¬741, MC¬741, RM¬741 SN72¬741 dan sebagainya.
Suatu kelompok IC disebut IC linear, antara lain IC regulator, Operational Amplfier, audio amplifier dan sebagainya. Sedangkan kelompok IC lain disebut IC digital misalnya NAND, NOR, OR, AND EXOR, BCD to seven segment decoder dan sebagainya.
Jenis IC yang sekarang berkembang dan banyak digunakan adalah Transistor¬-Transistor Logic (TTL) dan Complimentary Metal Oxide Semiconductor (CMOS).
Jenis CMOS banyak terdapat di pasaran ialah keluarga 4000, misalnya 4049, 4050 dan sebagainya. Jenis TTL ditandai dengan nomor awal 54 atau 74. Prefix 54 menandakan persyaratan militer ialah mampu bekerja dari suhu ¬54 sampai 125C. Sedangkan prefix 74 menandakan persyaratan komersial ialah mampu bekerja pada suhu 0 sampai 70C.
Penomoran TTL dilakukan dengan 2, 3 atau 4 digit angka mengikuti prefix-nya, misalnya 7400, 74192 dan sebagainya. Huruf yang berada diantara prefix dan suffix menandakan subfamily¬nya. Misalnya AS (Advance Schottkey), ALS (Advance Low Power Schottkey), H (High Speed), L (Low Speed), LS (Low Power Schottkey) dan S (Schottkey).
Apabila dibandingkan rangkaian dengan menggunakan transistor dengan rangkaian menggunakan IC, cenderung penggunaan IC lebih praktis dan biayanya relatif ebih ringan.
Pada saat ini sudah berkembang banyak sekali jenis IC, jenisnya sampai ratusan sehingga tidak mungkin dibicarakan secara umum. Untuk menggunakan IC kita harus mempunyai vademicum IC yang diterbitkan oleh pabrik¬-pabrik pembuatnya. Setiap jenis IC mempunyai penjelasan sendiri¬-sendiri mengenai sifatnya dan cara penggunaannya.
Apabila kita membuka lembaran vademicum IC, kita akan melihat berbagai symbol IC logic. Arti symbol¬-symbol ini akan kita pelajari bila sudah mulai eksperimen dengan IC digital.
Dengan mempelajari rangkaian suatu IC, yang terdiri atas begitu banyak komponen, maka dapat kita bayangkan bahwa piranti tersebut praktis tidak mungkin lagi dirangkai dengan menggunakan tabung-¬tabung elektron.




Gambar 2.16 : Beberapa contoh IC

F. Kumparan (Coil)
Coil adalah suatu gulungan kawat di atas suatu inti. Tergantung pada kebutuhan, yang banyak digunakan pada radio adalah inti udara dan inti ferrite. Coil juga disebut inductor, nilai induktansinya dinyatakan dalam besaran Henry (H). Dalam pesawat radio, coil digunakan :
1.Sebagai kumparan redam
2.Sebagai pengatur frekuensi
3.Sebagai filter
4.Sebagai alat kopel (penyambung)

G. Transformator (Trafo)
Transformator adalah dua buah kumparan yang dililitkan ada satu inti, inti bisa inti besi atau inti ferrite. Ia dapat meneruskan arus listrik AC dan tidak dapat untuk digunakan pada DC. Kumparan pertama disebut primer ialah kumparan yang menerima input, kumparan kedua disebut sekunder ialah kumparan yang menghasilkan output. Dalam pesawat radio, transformator digunakan:
1.Mengubah tegangan listrik (disebut Power Trafo)
2.Sebagai kopel
Selain komponen-komponen elektronika yang disebutkan diatas masih banyak lagi komponen yang digunakan dalam perangkat elektronika, seperti microphone, speaker, dan beberapa komponen lainnya.






















III. ELEKTRONIKA OPTIK

Tujuan Pembelajaran
1. Siswa dapat mengetahui sejarah perkembangan monitor
2. Siswa dapat mengetahui kelebihan dan kekurangan jenis monitor
3. Siswa dapat prinsip kerja LCD.
4. Siswa dapat membedakan komponen pasif dan komponen aktif

Teori dasar
3.1. Monitor

Monitor atau yang juga disebut sebagai “computer display” merupakan komponen output yang digunakan untuk menampilkan teks atau gambar ke layar sehingga dapat dinikmati oleh pemakai.

A). Sejarah Monitor
Pada generasi awal komputer, belum menggunakan monitor khusus seperti sekarang ini. Komputer waktu itu terhubung dengan TV keluarga sebagai layar penampil dari pengolahan data yang dilakukannya. Yang cukup menjadi masalah adlaah bahwa resolusi monitor TV saat itu hanya mampu menampilkan 40 karakter secara horisontal pada layar.
Monitor khusus untuk komputer dikeluarkan oleh IBM PC, yang pada awalnya memiliki resolusi 80 X 25 dengan kemampuan warna “green monochrome”. Monitor ini sudah mampu menampilkan hasil yang lebih terang, jelas dan lebih stabil.
Pada generasi berikutnya muncul mono graphics (MGA/MDA) yang memiliki 720x350. Selanjutnya di awal tahun 1980-an muncul jenis monitor CGA dengan range resolusi dari 160x200 sampai 640x200 dan kemampuan warna antara 2 sampai 16 warna.
Monitor EGA muncul dengan resolusi yang lebih bagus yaitu 640x350. Monitor jenis ini cukup stabil sampai berikutnya munculnya generasi komputer Windows.
Semua jenis monitor ini menggunakan digital video - TTL signals dengan discrete number yang spesifik untuk mengatur warna dan intensitas cahaya. Antara video adapter dan monitor memiliki 2, 4, 16, atau 64 warna tergantung standard grafik yang dimiliki.
Selanjutnya dengan diperkenalkannya standard monitor VGA, tampilan grafis dari sebuah Personal Computer menjadi nyata. VGA dan generasi-generasi yang berhasil sesudahnya seperti PGA, XGA, atau SVGA merupakan standard analog video dengan sinyal R (Red), G (Green) dan B (Blue) dengan continuous voltage dan continuous range pada pewarnaan. Secara prinsip analog monitor memungkinkan penggunaan full color dengan intensitas yang tinggi.
Generasi monitor terbaru adalah teknologi LCD yang tidak lagi menggunakan tabung elektron CRT tetapi menggunakan sejenis kristal liquid yang dapat berpendar. Teknologi ini menghasilkan monitor yang dikenal dengan nama Flat Panel Display dengan layar berbentuk pipih, dan kemampuan resolusi yang tinggi.

B). Jenis Monitor
Dengan perkembangannya yang sangat pesat, saat ini terdapat tiga jenis teknologi monitor. Ketiga golongan teknologi tersebut adalah CRT (Cathode Ray Tube), Liquid Crystal Display (LCD) dan Plasma gas.

1. Cathode Ray Tube (CRT)
Pada monitor CRT, layar penampil yang digunakan berupa tabung sinar katoda. Teknologi ini memunculkan tampilan pada monitor dengan cara memancarkan sinar elektron ke suatu titik di layar. Sinar tersebut akan diperkuat untuk menampilkan sisi terang dan diperlemah untuk sisi gelap.
Teknologi CRT merupakan teknologi termurah dibanding dengan kedua teknologi yang lain. Meski demikian resolusi yang dihasilkan sudah cukup baik untuk berbagai keperluan. Hanya saja energi listrik yang dibutuhkan cukup besar dan memiliki radiasi elektromagnetik yang cukup kuat.



2. Liquid Crystal Display
Monitor LCD tidak lagi menggunakan tabung elektron tetapi menggunakan sejenis kristal liquid yang dapat berpendar. Teknologi ini menghasilkan monitor yang dikenal dengan nama Flat Panel Display dengan layar berbentuk pipih, dan kemampuan resolusi yang lebih tinggi dibandingkan dengan CRT. Karena bentuknya yang pipih, maka monitor jenis flat tersebut menggunakan energi yang kecil dan banyak digunakan pada komputer-komputer portabel.
Kelebihan yang lain dari monitor LCD adalah adanya brightness ratio yang telah menyentuh angka 350 : 1. Brigtness ratio merupakan perbandingan antara tampilan yang paling gelap dengan tampilan yang paling terang.
Liquid Crystal Display menggunakan kristal liquid yang dapat berpendar. Kristal cair merupakan molekul organik kental yang mengalir seperti cairan, tetapi memiliki struktur spasial seperti kristal. (ditemukan pakar Botani Austria – Rjeinitzer) tahun 1888. Dengan menyorotkan sinar melalui kristal cair, intensitas sinar yang keluar dapat dikendalikan secara elektrik sehingga dapat membentuk panel-panel datar.
Lapisan-lapisan dalam sebuah LCD:
• Polaroid belakang
• Elektroda belakang
• Plat kaca belakang
• Kristal Cair
• Plat kaca depan
• Elektroda depan
• Polaroid depan
Elektroda dalam lapisan tersebut berfungsi untuk menciptakan medan listrik pada kristal cair, sedangkan polaroid digunakan untuk menciptakan suatu polarisasi.
Dari sisi harga, monitor LCD memang jauh lebih mahal jika dibandingkan dengan monitor CRT. Dan beberapa kelemahan yang masih dimilikinya seperti kurang mampu digunakan untuk bekerja dalam berbagai resolusi, seperti misalnya monitor dengan resolusi 1024 X 768 akan terkesan agak buram jika dipekerjakan pada resolusi 640 X 420. Tatapi akhir-akhir ini kelemahan tersbut sudah mulai di atasi dengan teknik anti aliasing.

3. Plasma Gas
Monitor jenis ini menggabungkan teknologi CRT dengan LCD. Dengan teknologi yang dihasilkan, mampu membuat layar dengan ketipisan menyerupai LCD dan sudut pandang yang dapat selebar CRT.
Plasma gas juga menggunakan fosfor seperti halnya pada teknologi CRT, tetapi layar pada plasma gas dapat perpendar tanpa adanya bantuan cahaya di belakang layar. Hal itu akan membuat energi yang diserap tidak sebesar monitor CRT. Kontras warna yang dihasilkan pun lebih baik dari LCD. Teknologi plasma gas ini sering bisa kita jumpai pada saat pertunjukan-pertunjukan musik atau pertandingan-pertandingan olahraga yang spektakuler. Di sana terdapat layar monitor raksasa yang dipasang pada sudut-sudut arena tertentu. Itulah monitor yang menggunakan teknologi plasma gas.

3.2. Cara Kerja LCD
A. Konsep Liquid Crystal (Kristal Cair)
Liquid Crystal diterjemahkan kristal cair. Aneh sekali... Bukankah kristal itu seharusnya padat. Mana mungkin kristal itu berbentuk cair? Mengapa digunakan nama yang aneh?
Padat dan cair merupakan dua sifat benda yang berbeda. Molekul-molekul benda padat tersebar secara teratur dan posisinya tidak berubah-ubah, sedangkan molekul-molekul zat cair letak dan posisinya tidak teratur karena dapat bergerak acak ke segala arah. Pada tahun 1888, seorang ahli botani, Friedrich Reinitzer, menemukan fase yang berada di tengah-tengah antara fase padat dan cair. Fase ini memiliki sifat-sifat padat dan cair secara bersama-sama. Molekul-molekulnya memiliki arah yang sama seperti sifat padat, tetapi molekul-molekul itu dapat bergerak bebas seperti pada cairan. Fase kristal cair ini berada lebih dekat dengan fase cair karena dengan sedikit penambahan temperatur (pemanasan) fasenya langsung berubah menjadi cair. Sifat ini menunjukkan sensitivitas yang tinggi terhadap temperatur. Sifat inilah yang menjadi dasar utama pemanfaatan kristal cair dalam teknologi.






Gambar 3.1 : Perbedaan karakteristik molekul
Untuk memahami sensitivitas kristal cair terhadap suhu, kita bisa menggunakan yang dikenal sebagai mood ring. Mood ring dianggap sebagai cincin ajaib yang punya daya magis yang dapat membaca emosi pemakainya. Saat si pemakai sedang marah atau tegang batu cincin tersebut berubah warna menjadi hitam, sedangkan saat sedang tenang batu berwarna biru. Berbagai emosi lainnya bisa diketahui berdasarkan perubahan warna batu cincin magis ini. Magis (magical)? Ataukah fisika (physical)? Tentu saja fisika! Karena batu cincin ini diisi dengan materi kristal cair yang sangat sensitif terhadap perubahan suhu, sekecil apa pun perubahannya. Perubahan suhu menyebabkan terpilinnya struktur molekul (twist) sehingga panjang gelombang cahaya yang diserap atau direfleksikan berubah pula. Perubahan suasana hati atau emosi si pemakai cincin menyebabkan perubahan suhu tubuh yang kemudian mempengaruhi suhu kristal cair yang terkandung dalam batu tersebut. Sewaktu suhu meningkat, molekul kristal cair terpilin dan menyebabkan warna merah dan hijau lebih banyak diserap dan warna biru lebih banyak direfleksikan sehingga warna yang terlihat adalah biru tua. Warna ini menunjukkan keadaan hati yang sedang bahagia dan bergairah karena saat bahagia suhu tubuh paling tinggi (pembuluh kapiler semakin mendekati permukaan kulit dan melepaskan panas). Suhu tubuh minimum saat sedang tegang karena pembuluh kapiler masuk semakin dalam sehingga suhu turun (digambarkan dengan warna hitam sebagai warna yang ditunjukkan kristal cair pada suhu terendah). Selain temperatur, kristal cair juga sangat sensitif terhadap arus listrik (beda potensial). Prinsip semacam inilah yang digunakan dalam teknologi LCD. Ini sebabnya layar laptop terkadang terlihat berbeda di musim dingin atau saat digunakan di cuaca sangat panas.
Beberapa jenis Kristal cair yang sering digunakan adalah Nematic Liquid Crystal, Super-Twisted Nematic dan Thin-Film Transistor.

3.3. Optocoupler
Optocoupler merupakan piranti elektronika yang berfungsi sebagai pemisah antara rangkaian power dengan rangkaian control. Optocoupler menggabungkan LED dan fotodioda dalam satu kemasan.
Optocoupler merupakan salah satu jenis komponen yang memanfaatkan sinar sebagai pemicu on/off-nya. Opto berarti optic dan coupler berarti pemicu. Sehingga bisa diartikan bahwa optocoupler merupakan suatu komponen yang bekerja berdasarkan picu cahaya optic opto-coupler termasuk dalam sensor, dimana terdiri dari dua bagian yaitu transmitter dan receiver. Dasar rangkaian dapat ditunjukkan seperti pada gambar dibawah ini:

Gambar 3.2 : Rangkaian Optocoupler
Bagian pemancar atau transmitter dibangun dari sebuah led infra merah untuk mendapatkan ketahanan yang lebih baik daripada menggunakan led biasa. Sensor ini bisa digunakan sebagai isolator dari rangkaian tegangan rendah kerangkaian tegangan tinggi. Selain itu juga bisa dipakai sebagai pendeteksi adanya penghalang antara transmitter dan receiver dengan memberi ruang uji dibagian tengah antara led dengan photo transistor. Penggunaan ini bisa diterapkan untuk mendeteksi putaran motor atau mendeteksi lubang penanda disket pada disk drive computer. Tapi pada alat yang penulis buat optocoupler untuk mendeteksi putaran.
Penggunaan dari optocoupler tergantung dari kebutuhannya. Ada berbagai macam bentuk, jenis, dan type. Seperti MOC 3040 atau 3020, 4N25 atau 4N33dan sebagainya.
Pada umumnya semua jenis optocoupler pada lembar datanya mampu dibebani tegangan sampai 7500 Volt tanpa terjadi kerusakan atau kebocoran. Biasanya dipasaran optocoupler tersedianya dengan type 4NXX atau MOC XXXX dengan X adalah angka part valuenya. Untuk type 4N25 ini mempunyai tegangan isolasi sebesar 2500 Volt dengan kemampuan maksimal led dialiri arus fordward sebesar 80 mA. Namun besarnya arus led yang digunakan berkisar antara 15mA - 30 mA dan untuk menghubungkan-nya dengan tegangan +5 Volt diperlukan tahanan pembatas.


Latihan bab 3
1. Jelaskan secara singkat 3 jenis monitor yang telah dipelajari ?
2. Bagaimana

Tidak ada komentar:

Posting Komentar